Water, energy and emissions in concrete production: International trends and local opportunities

Authors

DOI:

https://doi.org/10.52076/eacad-v6i3.671

Keywords:

Sustainable concrete; Water footprint; Carbon footprint; Life cycle analysis; Panama.

Abstract

Concrete is the most widely used construction material in Panama and its production generates significant environmental impacts related to water and energy consumption, CO2 emissions and the extraction of natural resources. The objective of this study is to analyze the state of the art on sustainable concrete production, integrating international evidence with the gaps and needs identified in Panama. The methodology consisted of a literature review that included scientific articles, reviews, case studies and technical reports related to CO2 emissions, energy consumption, water use and life cycle analysis. The results show significant advances in mitigation strategies, especially in clinker reduction, the use of supplementary cementitious materials, mix optimization and water management. Important information gaps were also identified in the Panamanian context. The study concludes by highlighting the need to develop standardized methodologies, improve the availability of data, and strengthen the technical capacities of the sector to move towards more sustainable concrete production in Panama.

References

Ankur, N., & Singh, N. (2022). A Review on the Life Cycle Assessment Phases of Cement and Concrete Manufacturing. En P. Ghadimi, M. D. Gilchrist, & M. Xu (Eds.), Role of Circular Economy in Resource Sustainability (pp. 85-96). Springer International Publishing. https://doi.org/10.1007/978-3-030-90217-9_8

Ding, C., Dong, W., Zhang, A., Wang, Z., Zhao, N., Chen, R., & Fu, H. (2021). Life cycle water footprint assessment of concrete production in Northwest China. Water Policy, 23(5), 1211-1229. https://doi.org/10.2166/wp.2021.009

Fraga, J. M., Caño, A. del, & Cruz, M. P. de la. (2014). Sostenibilidad en la preparación y puesta en obra de hormigón en España: Análisis de consumo energético y emisiones de CO2. Proceedings from the 18th International Congress on Project Management and Engineering (Alcañiz, July 2014), 2014, ISBN 978-84-617-2742-1, págs. 508-520, 508-520. https://dialnet.unirioja.es/servlet/articulo?codigo=8225635

Kim, T., Tae, S., & Roh, S. (2013). Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system. Renewable and Sustainable Energy Reviews, 25, 729-741. https://doi.org/10.1016/j.rser.2013.05.013

Mack-Vergara, Y. L., & John, V. M. (2017). Life cycle water inventory in concrete production—A review. Resources, Conservation and Recycling, 122, 227-250. https://doi.org/10.1016/j.resconrec.2017.01.004

Mack-Vergara, Y. L., Sulbarán, L., & Lima, Y. (2025). Water Consumption of Concrete Production in Panama. En L. Ferrara, G. Muciaccia, & N. Trochoutsou (Eds.), Proceedings of the RILEM Spring Convention and Conference 2024 (pp. 421-428). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-70277-8_48

Mack-Vergara, Y., & Vanderley, J. (2019). Opportunities for Reducing Water Consumption in Concrete Production: The Panama Canal Expansion Case Study. https://www.iahr.org/library/infor?pid=3765

Mack-Vergara,Y. L. & John V. M. (2019). Global Concrete Water Footprint. 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), 193-196. https://doi.org/10.1109/IESTEC46403.2019.00-77

Mahevi, S. A., Kaliluthin, A. K., Husain, D., Ansari, Y., & Ahmad, I. (2024). Ecological Footprint and Economic Assessment of Ready-Mix Concrete Production. En S. S. Muthu (Ed.), Ecological Footprint of Industrial Spaces and Processes (pp. 37-48). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-69047-1_4

Manjunatha, M., Preethi, S., Malingaraya, Mounika, H. G., Niveditha, K. N., & Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, 47, 3637-3644. https://doi.org/10.1016/j.matpr.2021.01.248

Medina Sandoval, G. A., Rodríguez Cruz, B. A., & Mack-Vergara, Y. L. (2022). Oportunidades de reducción de impactos ambientales de la producción de hormigón en Panamá. E-Acadêmica, 3(3), e0333264-e0333264.

Mehta, K. (2001). Reducing the Environmental Impact of Concrete . Undefined. https://www.semanticscholar.org/paper/Reducing-the-Environmental-Impact-of-Concrete-Mehta/7e74b74e2a395c0827df458c0c60ef872d150d0c

Mehta, P. K. (2010). Sustainable Cements and Concrete for the Climate Change Era – A Review. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.2738&rep=rep1&type=pdf

Mendoza-Rangel, J. M., Díaz-Aguilera, J. H., Mendoza-Rangel, J. M., & Díaz-Aguilera, J. H. (2023). Economía circular en la industria latinoamericana del cemento y el concreto: Una solución sustentable de diseño, durabilidad, materiales y procesos. Revista ALCONPAT, 13(3), 328-348. https://doi.org/10.21041/ra.v13i3.697

Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010

Miller, S. A., Horvath, A., & Monteiro, P. J. M. (2018). Impacts of booming concrete production on water resources worldwide. Nature Sustainability, 1(1), Article 1. https://doi.org/10.1038/s41893-017-0009-5

Ngo, H.-T., Kadri, E.-H., Kaci, A., Ngo, T.-T., Trudel, A., & Lecrux, S. (2016). Advanced online water content measurement for self-compacting concrete production in ready-mixed concrete plants. Construction and Building Materials, 112, 570-580. https://doi.org/10.1016/j.conbuildmat.2016.02.158

Pereira, A. S., Shitsuka, D. M., Fabio José Parreira, & Shitsuka, R. (2018). Metodologia de pesquisa científica. Editora da UFSM.

Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. https://doi.org/10.1016/j.cemconcomp.2014.03.005

Restrepo-Ramírez, A. F., Rúa-Machado, C. A., Arias-Jaramillo, Y. P., Restrepo-Ramírez, A. F., Rúa-Machado, C. A., & Arias-Jaramillo, Y. P. (2024). Optimizaciones en el diseño de mezclas de concreto para la sostenibilidad de un área metropolitana de sudamérica implementando análisis de ciclo de vida de materiales. Revista hábitat sustentable, 14(1), 44-65. https://doi.org/10.22320/07190700.2024.14.01.04

Rother, E. T. (2007). Revisión sistemática X revisión narrativa. Acta Paulista de Enfermagem, 20, v-vi. https://doi.org/10.1590/S0103-21002007000200001

Sanguinetti, C. M., & Ortiz, F. Q. (2014). Análisis de Ciclo de Vida en la determinación de la energía contenida y la huella de carbono en el proceso de fabricación del hormigón premezclado. Caso estudio planta productora Región del Bío Bío, Chile. Hábitat Sustentable, 16-25. http://revistas.ubiobio.cl/index.php/RHS/article/view/447

Vázquez-Calle, K., Guillén-Mena, V., & Quesada-Molina, F. (2022). Analysis of the Embodied Energy and CO2 Emissions of Ready-Mixed Concrete: A Case Study in Cuenca, Ecuador. Materials, 15(14), Article 14. https://doi.org/10.3390/ma15144896

Villagrán-Zaccardi, Y., Pareja, R., Rojas, L., Irassar, E. F., Torres-Acosta, A., Tobón, J., & John, V. M. (2022). Overview of cement and concrete production in Latin America and the Caribbean with a focus on the goals of reaching carbon neutrality. RILEM Technical Letters, 7, 30-46. https://doi.org/10.21809/rilemtechlett.2022.155

Yoshioka, K., Obata, D., Nanjo, H., Yokozeki, K., Torichigai, T., Morioka, M., & Higuchi, T. (2013). New Ecological Concrete that Reduces CO2 Emissions Below Zero Level ∼ New Method for CO2 Capture and Storage ∼. Energy Procedia, 37, 6018-6025. https://doi.org/10.1016/j.egypro.2013.06.530

Published

21/12/2025

How to Cite

Sulbarán, L., Lima, Y., & Mack-Vergara, Y. L. (2025). Water, energy and emissions in concrete production: International trends and local opportunities. E-Acadêmica, 6(3), e1563671. https://doi.org/10.52076/eacad-v6i3.671

Issue

Section

Exact and Technological Sciences